
Analysis of Auto Data: Modeling Growth and Evaluating
Multiple Linear Regression Assumptions

Issues

The data is obtained as a subset of the Auto data mentioned in “An Introduction to
Statistical Learning with Applications in R”,  Chapter 3, page 123.
For this data set there are 4 predictor variables: displacement, horsepower, weight,
and acceleration, and one predicted variable, mpg. Here we answer the following
issues,
(a) Produce a scatterplot matrix which includes all of the variables in the data set.

(b) Compute the matrix of correlations between the variables using the function
cor() . You will need to exclude the name variable, cor() which is qualitative.

(c) Use the lm() function to perform a multiple linear regression with mpg as the
response and all other variables except name as the predictors. Use the summary()
function to print the results. Comment on the output.

(d) Use the plot() function to produce diagnostic plots of the linear regression fit.
Comment on any problems you see with the fit.Do the residual plots suggest any
unusually large outliers? Does the leverage plot identify any observations with
unusually high leverage?

(e) Use the * and : symbols to fit linear regression models with interaction effects.
Do any interactions appear to be statistically significant?

(f) Try a few different transformations of the variables, such as log(X), √X, X^2 .
Comment on your findings.

Findings



The data set consists of auto data (displacement, horsepower, weight, acceleration,
mpg) as an Excel (xls) file.

We can find out that there are around 389 values. All the values show a correlation
between each of the other variables.

● Displacement shows positive correlation with horsepower and weight and
negative correlation with acceleration and mpg.

● Horsepower shows a positive correlation with displacement and weight and
a negative correlation with acceleration and mpg.

● Weight shows positive correlation with displacement and horsepower and a
negative correlation with acceleration and mpg.

● Acceleration shows positive correlation with mpg only and negative
correlations with the rest.

● Mpg shows a positive correlation with acceleration only and negative
correlation with the rest.

After creating a regression line, the model is summarised. The condition number is
large, 3.33e+04. This might indicate that there are strong multicollinearity or other
numerical problems.

Discussions

Multiple linear regression is a powerful  tool for analysing relationships between
multiple variables. In this case, auto dataset with variables such as displacement,
horsepower, weight, acceleration, and mpg, multiple linear regression can be used
to identify the factors that affect fuel efficiency and to develop models that can be
used to predict the fuel efficiency of new automobiles.

Once the model has been developed, it can be used to predict the fuel efficiency of
new automobiles based on the four independent variables. The predicted values
can be compared to the actual values to assess the accuracy of the model and to
identify any areas where improvements can be made.

From the multi linear regression model, we can now find out the r squared value of
0.712 and a skewness of 1.053 and a kurtosis value of 5.102.



From the findings, we can understand that the data is not normally distributed. And
the regression line passes through the scattered data points.

Appendix A: Method

The data is imported using the read_excel command from the pandas package as it
is an excel file. Then we find out if there are any null values. If not, we create a
scatter plot showing the entire figure of all the variables to find the correlations.

Then we find the regression model and use it to find the residuals. Residuals are the
difference between the actual value and predicted value. And we create a
histogram to find out it is not a normal distribution. Correlation matrix is also found
to know the relation between all the variables.

We then plot out the diagnostic plots of the residuals which are of 4 different types
namely- Residual vs fitted, Normal Q-Q, Scale location and Residual vs leverage.
All these models will help us decide if the model is a correct fit or not.

This is done to find out and predict the best fit for the mpg variable.

Appendix B: Results

The scatter plot figure helps to find out the correlation between all the variables.
Over here we are using the heatmap to understand it in a numerical way.
Greener the box, it is positively correlated. More red the box, it is negatively
correlated.



Now, we can find out that the regression line is passing through the data points. It is
between the actual y and the predicted y.



Now, as we plot the diagnostic plots.
Residual vs fitted plot makes us understand that there isn't any clear pattern for the
model to fit the best.

Normal q-q plot shows most of the data points are outside the dotted lines so we
can understand it is not normally distributed.

Scale-Location figure helps us to understand that the data points are uniformly
distributed at a region and then they are scattered after 20 on the X axis.



In the residuals vs leverage plot, we can find out that one is way off the plot and the
rest of the data points are closely scattered. Those points influence if the model can
be good or not.

Then we create new interactions and variables to create the models again to see if
they would be a good fit.

1. Is atleast one of the predictors useful in predicting the response?

Yes, there is a relationship between the predicted variable(mpg) and the
predictors.  As we saw in the heatmap, mpg shows a correlation. P value is
close to 0 so we can reject the null hypothesis. We can also say that on the
basis of the Correlation Matrix and also model's R-squared value is 0.712



which means Model can predict 71.2 % of mpg values on the basis of other
variables.

2.Do all the predictors help to explain the response, or is only a subset of the
are predictors useful?

If the p value is less than 0.05, then the predictors are significant. Otherwise
they are insignificant. So, all the variables help to explain the response.

3.How well does the model fit the data?

The model is a good fit for the multiple linear regression as the data points
are distributed and their contribution helps in accessing the overall plots.

4.Given a set of predictor values, what response value should we predict,
and how accurate is our prediction?

The response value that should be predicted will depend on the specific
problem and the nature of the predictor values.The accuracy of the prediction
will depend on the specific modelling approach and the quality of the data.In
general, the accuracy of the prediction can be assessed by comparing the
predicted response values to the actual response values using metrics such
as mean squared error, root mean squared error, or R-squared. It is also
important to validate the model using a separate test set to ensure that it
generalises well to new data.

Appendix C: Code

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm



df = pd.read_excel("auto_data_porandla_rithik.xls")
df.head()

df.info()

df.isnull().sum()

df.describe()

"""Scatter plot for the variables"""

sns.pairplot(df)

df.corr()

sns.set(rc={'figure.figsize':(10,8)})
sns.heatmap(df.corr(),cmap="RdYlGn",annot=True);
plt.show()

X = df[['displacement','horsepower','weight',
'acceleration']]

y = df['mpg']

X.head()

y.head()

X = sm.add_constant(X)

model = sm.OLS(y,X).fit()

model.params

round(model.params, 3)

model.summary()

y_pred = model.predict(X)

print("The predicted values are: ")
print(y_pred)

y_residual = pd.DataFrame({'Actual Value' : y, 'Predicted Value' :
y_pred, 'Residual' : y - y_pred})

y_residual

sns.distplot(y_residual['Residual'],color='blue',bins=50)
plt.title('Distribution of Residuals')
plt.show()



"""So it is clearly not a normal dist."""

plt.scatter(y, y_pred, c='black')
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title("Actual y VS Predicted y")
plt.show();

sns.set(rc={'figure.figsize':(10,10)})
sns.regplot(y,y_pred,color='black');

from sklearn import metrics

mean_absolute_error = metrics.mean_absolute_error(y,y_pred)
mean_squared_error = metrics.mean_squared_error(y,y_pred)
root_mean_squared_error = np.sqrt(metrics.mean_squared_error(y,y_pred))

print("Mean Absolute Error : ",round(mean_absolute_error,3))
print("Mean Squared Error : ",round(mean_squared_error,3))
print("Root Mean Squared Error : ",round(root_mean_squared_error,3))

res = df.copy()

res['resid'] = model.resid

res['fitted_values'] = model.fittedvalues

res['resid_std'] = model.resid_pearson

res['leverage'] = model.get_influence().hat_matrix_diag

res

sns.set(rc={'figure.figsize':(15,8)})
sns.regplot(x=res['fitted_values'],y=res['resid'],color='red',order=3)
plt.hlines(y=0,xmin=0,xmax=40,color='black')
plt.xlabel("Fitted Values")
plt.ylabel("Residuals")
plt.title("Residuals vs Fitted")
plt.show();

!pip install pingouin

import pingouin as pg

pg.qqplot(res['resid'],dist='norm');

sns.regplot(x=res['fitted_values'],y=res['resid_std'],color='red',order
=3)



plt.hlines(y=0,xmin=0,xmax=45,color='black')
plt.xlabel("Fitted Values")
plt.ylabel("Sqrt(|Standardized residuals|)")
plt.title("Scale-Location")
plt.show()

sns.scatterplot(x=res['leverage'],y=res['resid'],color='red')
plt.title("Residuals vs Leverage")
plt.xlabel("Leverage")
plt.ylabel("Residuals")
plt.show()

df['acceleration_horsepower'] = df['acceleration'] * df['horsepower']

df.corr()

"""9 f"""

X

X_new = X.loc[:,X.columns != 'const']

X_new.head()

"""log of all varibles"""

X_log =
np.log2(X_new[['displacement','horsepower','weight','acceleration']])

X_log.head()

X_log = sm.add_constant(X_log)

X_log.head()

model_log = sm.OLS(y,X_log).fit()

model_log.params

round(model_log.params,3)

model_log.summary()

y_pred_log = model_log.predict(X_log)

mean_absolute_error = metrics.mean_absolute_error(y,y_pred_log)
mean_squared_error = metrics.mean_squared_error(y,y_pred_log)
root_mean_squared_error =
np.sqrt(metrics.mean_squared_error(y,y_pred_log))

print("Mean Absolute Error : ",round(mean_absolute_error,3))



print("Mean Squared Error : ",round(mean_squared_error,3))
print("Root Mean Squared Error : ",round(root_mean_squared_error,3))

X_square =
np.power(X_new[['displacement','horsepower','weight','acceleration']],
2)

X_square.head()

X_square = sm.add_constant(X_square)

X_square.head()

model_square = sm.OLS(y,X_square).fit()

model_square.params

round(model_square.params,6)

model_square.summary()

y_pred_square = model_square.predict(X_square)

mean_absolute_error = metrics.mean_absolute_error(y,y_pred_square)
mean_squared_error = metrics.mean_squared_error(y,y_pred_square)
root_mean_squared_error =
np.sqrt(metrics.mean_squared_error(y,y_pred_square))

print("Mean Absolute Error : ",round(mean_absolute_error,3))
print("Mean Squared Error : ",round(mean_squared_error,3))
print("Root Mean Squared Error : ",round(root_mean_squared_error,3))


